
Technical Report TUD-CS-2006-5

Difference Detection and Visualization
in UML Class Diagrams

Martin Girschick
TU Darmstadt

Department of Computer Science
Metamodelling and its Applications

girschick@informatik.tu-darmstadt.de
http://www.mm.informatik.tu-darmstadt.de/staff/girschick/

Abstract: Analyzing typical diagram life cycles results in the observation that they
usually undergo several modifications during the development process. The better the
tracking of such changes the more information can be obtained from them. As class
diagrams are among the most widely used and most important UML diagram types,
this paper investigates the concept of class diagram diffing and applies it to several
application areas such as software design, implementation documentation, roundtrip
modeling, and model driven development. I present the design of a change-detection
implementation, which automatically detects differences between class diagrams and
visualizes them by the use of color.

1 Introduction

Modern modeling tools already support the creation of source code templates from class
diagrams. With the advent of MDA, model transformation and code generation become
important research topics. Both technologies bridge the gap from model to source.

Looking at current software development processes shows that after designing the model
and starting with the implementation the model is seldom updated to match the current
implementation state. There are several reasons for that: Sometimes the design is done by
one team and implementation by another. Maintaining the model requires knowledge of
the whole system, only simple changes in the source code can be automatically applied
to the model. An often practiced technique is to reengineer the class diagram after the
implementation phase to match the final version and then check, if it still complies with
the modeled version. This comparison may need to be repeated several times during the
development process. However, currently no tool for showing the differences between the
designed model and the reengineered counterpart exists.

The required model comparison is similar to the process of comparing two versions of
source code. Current versioning tools (CVS, SCCS, Subversion, etc.) use a purely text

http://www.mm.informatik.tu-darmstadt.de/staff/girschick/


based approach to find the differences. This generic approach leads to several problems,
which are detailed in section 4.1.

This paper presents an algorithm, which compares two class diagrams and visualizes the
differences. The advantage of this specialized algorithm is the ability to find similar and
not only identical elements and to describe the differences more accurately. It can be used
with both manually designed models and reengineered diagrams created from source code.

The next section gives an example for class diagram diffing. After that the applicability
of a difference analysis is discussed by looking at the lifecycle of a class diagram. This
section also details, how differences can be described and visualized. Subsequently the
diffing algorithm and a prototype implementing it are described. A case study and a list
of possible applications of class diagram diffing follow. Before concluding, related and
future work is described.

2 An example

Figure 1: Two sample UML class diagrams

A short example illustrates the application of the algorithm. In figure 1 two class diagrams
are shown, the diagram on the right side is a modified version of the diagram on the left.
The observed differences are:

• The class Discussion with the attribute topic and the operation setTopic
has been added. It inherits from the class Event.

• The attribute location and the operation setLocation have been moved from
Concert to Event.

• The attribute reader of the class Reading has been renamed to readers and
converted to an array.



• setReader has been removed, addReader and removeReader are added.

The aim of the algorithm is to automate the analysis process and to generate a list of
transformations, which converts the left to the right diagram. Merging both diagrams
and coloring the modified elements results in the diagram shown in figure 2. The HTML
report, which is also automatically produced by UMLDiffcld, includes a list of the trans-
formations. A green background shows moved elements, blue denotes new elements, and
orange removed elements. As can be easily verified, all observed differences in this exam-
ple have been correctly identified.

Figure 2: HTML report including the combined and colored diagrams

3 Analysis

3.1 The lifecycle of a class diagram

Class diagrams are used throughout the software development process. During the design,
class diagrams are created from scratch or taken from previous releases. After that, the
diagrams are incrementally refined. Usually diagrams do not only exist in several revisions
but also in different variants. A difference analysis can compare the branches and visualize
the differences. This is useful, when the branches have to be merged again.

In iterative processes the phases are repeated several times. Often between iterations the



software is released for testing. By analyzing the differences to previous releases both
developers and clients can check which parts have been changed and whether the system
still complies with the design.

Finally, class diagrams serve as a good starting point for documenting a system. By using
color to visualize differences between a previous and the current release the changes on
the model are compactly documented. For instance “unstable” parts of the system, which
change extensively, can be identified.

3.2 Describing the changes

The modifications applied to a class diagram can be described using basic transformation
operations. By reapplying a list of such transformations to an old version of a diagram
the new version can be recreated. The following transformation operations have been
identified:

add To add new modeling elements to the diagram

delete To remove elements

rename To rename elements (where applicable)

move Moves an element (and optionally its parts) to another container (A container is a
diagram element, which contains other elements, called parts.)

clone Copies an element to another container

modify property Changes a property (e.g. type, visibility, stereotype, multiplicity, etc.)

3.3 Visualization

Several visualization techniques can be applied to provide a better presentation of the
differences between class diagrams. Color-coding the different transformation operations
(e.g. newly added elements are colored green, removed elements are red) and presenting
them in a tabular report is one of them. Another technique is the usage of animation to
present the recorded changes. This is useful to show the source and destination of moved
elements. The color coding can also be transferred to class diagrams as has been shown in
section 2.

4 Calculation of differences

Two different approaches can be used to detect differences in data structures.



Online By adding functionality to a modeling tool it is possible to record the changes
while they occur. The advantage of this approach is that not only the change is
detected but also how the change is produced. This helps to alleviate some of the
analysis problems, which can occur when comparing class diagrams (see subsec-
tion 4.2.1). There are a few minor disadvantages: By recording all changes on a
model a plethora of data is collected. This results from the fact that some changes
are only temporary until the model reaches the next “savepoint”. In addition track-
ing the changes “online” is only applicable to one model. This prevents analysis of
models, which come from different sources (e.g. reengineered models).

Offline During the construction of the class diagram “snapshots” are taken (similar to
the procedure of text based versioning tools). Later a separate tool compares them.
With this technique it is possible to compare class diagrams, which have been cre-
ated not only from snapshots but also from different branches or automatic diagram
generation tools.

The prototype, named UMLDiffcld
1, uses the offline approach to compare two class dia-

grams. It creates a list of transformation operations which are then displayed in a colored
report table and a colored UML class diagram. The numerous applications of this ap-
proach are detailed in section 6. The prototype uses XML files as input. The chosen
format contains only the information necessary for model analysis and is not yet compat-
ible with XMI, although support for XMI or other model interchange formats is planned.
A description of the used XML schema is available in [Gir02].

4.1 Comparing general data structures

By choosing the offline approach and defining an appropriate data structure the difference
analysis has many similarities to traditional ways of comparing two data structures. Sev-
eral algorithms and tools have already been developed for this purpose. Widely known in
the Unix world is diff2, which uses a line based algorithm to find the difference between
two text files. As this approach has no knowledge of the used data structure it cannot
identify specific differences and is therefore unusable to compare structured data.

Several algorithms have also been designed to work with XML files. As an XML docu-
ment can be seen as a tree structure, graph algorithms have been considered as well. The
Tree-to-Tree-Problem described in [Sel77] is a well known graph problem, which deter-
mines the differences between two trees. In [HO82] five algorithms are described and
compared. These algorithms have several restrictions: The limited alphabet of the nodes
makes them unusable for the described problem. Additionally those algorithms only try
to match identical and not “similar” parts, which is also a requirement for the difference
analysis of class diagrams. A now retired project at IBM/Alphaworks created a tool named
XMLTreeDiff3, which adapted the functionality of Unix-diff for XML files. Changed and

1cld stands for class diagram.
2http://www.gnu.org/software/diffutils/diffutils.html
3http://www.alphaworks.ibm.com/tech/xmltreediff

http://www.gnu.org/software/diffutils/diffutils.html
http://www.alphaworks.ibm.com/tech/xmltreediff


removed XML attributes and elements are colored to emphasize the differences. Unfortu-
nately, this algorithm cannot deal with moved elements either.

The change-detection algorithm X-Diff presented in [YW] deals with another XML is-
sue: Siblings within an XML structure are usually not ordered. This algorithm uses an
unordered model for comparing siblings and is therefore more accurate. A disadvantage
is that this algorithm does not detect and describe elements, which have been moved to a
different location in the XML tree.

Finding elements, which have been moved to a different location within the XML tree,
is possible with the method used in [CTZ01]. However, this works only with identical
elements and not similar items.

Finally the best suited algorithm is the one presented by Sudarshan S. Chawathe und Hec-
tor Garcia-Molina in [CGM97]. In their approach, the matching of the elements is reduced
to a graph problem, which tries to find the minimal cost for matching a bipartite graph4. A
weighting function is used to determine the probability of a correct match. This approach
is very good for generic data structures but if the data structure is known, better results can
be accomplished by writing specific algorithms.

4.2 Comparing class diagrams

The previous subsection showed that generic diffing algorithms cannot effectively be used
to compare class diagrams. The algorithm described in the remaining section is a combi-
nation of ideas from the generic algorithms and some self developed techniques.

The following data structure details have to be taken into account and can be exploited
when designing the algorithm:

• The type of a class diagram element doesn’t change (A class can’t change to an
attribute).

• The order of classes, and the order of attributes and operations within a class is
irrelevant.

• The order of the parameters of an operation is relevant.

• The hierarchy of elements is well defined (e.g. packages are containers, their parts
are classes, parameters are attached to operations).

• Classes, attributes, operations and parameters have a name.

• The name (for operations this includes the signature) is unique within that container
(A container is the enclosing data structure element.).

• Some modeling tools attach a unique ID to every diagram element. If the ID remains
constant even across multiple versions and when the element is moved to a different

4A bipartite graph consists of two node sets, edges only go from one set to the other.



container it can be used for the matching process. This ID-check is restricted to
diagrams, which originate from the same source.

• Stereotypes cannot be changed (they are deleted and added instead, which is seman-
tically more sensible).

• The supplier of a generalization can only be changed to another superclass (other-
wise the generalization has to be deleted and - with the new supplier - added again).

• Associations can only be moved along the inheritance hierarchy.

Exploiting such information for the design of the algorithm allows more semantic flavor
to be captured in diffing, as opposed to a plain syntactic approach not taking any of the
element properties into account. In contrast to the generic algorithms from the previous
section, which only detect operations like delete or insert, this algorithm also tries to find
moved and renamed elements correctly.

Usual diffing algorithms only try to match identical parts. The class diagram diffing al-
gorithm also matches similar elements. Often an element within a class diagram is only
changed slightly from one release to another (e.g. the type of a parameter is changed to a
superclass). This prevents generic algorithms to identify the changed parts correctly.

Some modeling tools attach additional (non UML) information to diagram elements, for
instance visualisation hints like color or position. These additional properties are also
analyzed by UMLDiffcld and produce additional modify transformation operations.

The algorithm takes two class diagrams as input. From now on the first diagram is called
the base diagram (short db) and the second variant diagram (short dv). The algorithm
produces a list of transformation operations, which transform db to dv . An element within
the base or variant diagram is called eb or ev respectively.

The following section gives a detailed description of the algorithm. In addition figure 3
gives a short overview of the algorithm using pseudo code.

4.2.1 The UMLDiffcld algorithm

The XML data structure is compared level by level. First all packages, followed by all
classes, followed by the four element types within all classes. Each level produces a set of
transformation operations. After all levels have been compared, the collected transforma-
tion operations are optionally passed on to a supplementary analysis phase. See section 7
for the different applications of this phase.

On each level a comparison function called findMatch helps to find the best match for
each element. For that evaluation functions are used, which measure the “quality” of a
match. Some functions are common to all element types, others are specific to a subset
of them. A “breadth first” approach was chosen because elements are often moved to
other containers (classes to other packages, operations to sub- or superclasses). Another
advantage is that the effect of wrong matches is minimized, because only after all classes
have been matched the elements within those classes are considered. With a depth first



approach each class and its parts would be handled separately. This degrades the quality
of matches towards the end of the matching process, because better matching items might
have been already matched before. Breadth first makes the matching more precise in the
following levels.

Each element from the variant diagram is visited and the most appropriate match in the
base diagram is determined. The reason for starting in the variant diagram is that it usually
contains more information to be analyzed. Another reason is the clone operation, which
is used to match one element in the base diagram with two or more elements in the variant.
From each match a list of transformation operations is generated. This contains both
structural changes (e.g. an element is moved to a different location) and modifications
(e.g. changed name or visibility). If no match is found, the element is considered to
be new and an add operation is generated. Unmatched elements from the base diagram
generate a delete transformation operation.

The operations are then applied to the base diagram. Deleted elements are only marked as
deleted, because the parts might have been moved to other elements (e.g. a package has
been deleted, but the classes have been moved to different packages). The parts of newly
added elements are not created yet, because they may have been moved there from other
locations. The updated diagram is now used on the following levels for comparison. The
specifics of the different levels are detailed further in the following list:

1. packages Packages are matched by their name and their parts. If a match is found
the name of both packages are compared. A changed name results in a modify
transformation operation.

2. classes If for one class in the variant diagram several classes exist in the base di-
agram, the clone operation is used to create the newly found classes. This can
be useful when a class is split into two or a class implementing an interface is cre-
ated. Classes, which have been moved to a different package, are represented by a
move operation. Other class specific changes (e.g. name or type) are described by
modify operations. When applying the move operation the parts of the class are
moved as well.

3. generalizations An evaluation function takes into account that a generalization is
usually only changed to another sub- or superclass within the same inheritance hi-
erarchy.

4. attributes Matching attributes correctly is difficult as an attribute has only a few
properties. Even when an online approach is used to detect changes it is usually not
known, whether the programmer renamed an attribute or simply reused an existing
attribute for something else by changing its name.

5. associations Associations normally correspond to attributes within the class. As
those had been examined before and any moved attributes should have been detected
correctly, finding the moved associations is simple.

6. operations Finally, the operations and their parameters are examined. Here we want
to honor the fact that quite often new operations are created, which have the same



name as existing ones. A clone operation is used to show that the newly added
operation is similar to an existing one. The same type of operation is used to create
new operations, which have the same name as an operation in a superclass. This is
especially useful when an interface is implemented and all its operations are cloned
into the implementing class. To match an operation, its signature is included by the
evaluation functions. The parameters of the matched operation are checked and - if
changed - appropriate transformation operations are created.

4.2.2 The comparison function

findMatch is called for every element ev in dv . It first finds the corresponding container
in db. For a class this means, that the search for a matching class is started in the package,
which has been matched on the previous level. All elements within that corresponding con-
tainer are weighted against ev . This is done by calling the appropriate evaluation functions
for that element type. Each functions returns a value between −16 and +16 representing
the likelihood of the match5. Negative values show an unlikely match and high positive
numbers a good match. 0 is returned when the function cannot decide whether a match
exists or not. In future versions additional evaluation functions can be added to improve
the matching process or a manual process can match elements by asking the user. All
evaluation functions are summed up and the highest value represents the best match. If
the sum exceeds a given limit, the match is taken. If the sum is lower than the limit, the
search is broadened to all elements in db which are on the same level. If still no match can
be found, it is considered to be new.

4.2.3 The evaluation functions

The characteristics of class diagram elements are compared by the evaluation functions.
The following list describes some of those characteristics. The first items are “good”
characteristics and towards the end of the list the “weaker” criteria are described.

location In most cases the matching element will be in the corresponding container, so
this place is searched first. Looking at well known refactoring steps items are often
moved to sub- or superclasses, so “nearby” locations are preferred.

name Most elements have a name, if this is identical, the evaluation function returns a
high value, similar names are considered as well.

stereotype Often stereotypes are used to describe global aspects, which are in many cases
only available once and therefore are a good matching criteria.

type The type is also a good matching characteristic. Again, if the changed type is
“closer” in the inheritance hierarchy it leads to a higher value.

516 was chosen arbitrarily to define the range of the values to be returned by the evaluation functions.



void umldiff(Diagram db, Diagram dv)
{

foreach (package pv in dv) analyse(pv,db);
// mark unmatched packages as deleted
foreach (unmatched package pb in db) markDeleted(pb);

foreach (class cb in dv) analyse(cb,db);
foreach (unmatched class cb in db) markDeleted(cb);

foreach (generalization ...
foreach (attribute ...
foreach (association ...
foreach (operation ...

}

// first find matching element, then
// find and apply transformations for this element
void analyse(Element ev, Diagram db)
{

matchingElement = findMatch(ev,db);
transform(matchingElement,ev);

}

// find appropriate match for ev
// first search previously matched container
// then search other containers
element findMatch(Element ev, Diagram db)
{

variantContainer = getContainer(ev);
baseContainer = getMatch(variantContainer);
maxElement = null;

// search in matching container
foreach (element eb in baseContainer)
{

if (weightAgainst(eb,ev) > value(maxElement))

maxElement = eb;
}
// check, if match exceeds minimum limit
if (value(maxElement) < limit)
{
// broaden search by searching other containers
// which have the same type and therefore are
// on the same level (siblings)
otherContainers = siblings(baseContainer);
foreach (element eb in otherContainers);
{

if (weightAgainst(eb,ev) > val(maxElement))
maxElement = eb;

}
// check against limit again
if (value(maxElement) < limit) return null;

}
return maxElement;

}

// find transformation operations
// and apply them to the base diagram
void transform(Element eb, Element ev)
{

if (eb equals null) // no match found
{
addOperation(ev);
return;

}
else if (eb already matched) cloneOperation(eb,ev);
if (eb differs from ev) modifyOperations(eb,ev);
if (container(eb) != container(ev))
moveOperation(eb,ev);

}

Figure 3: Pseudo code for the change analysis algorithm

signature The signature is a very important criteria for operations. If the operation has
many parameters, it is more suitable than the name of the operation.

parts In both container types, packages and classes it is quite useful to also look at their
parts to identify matching elements.

predecessor Usually the order of attributes and operations is not considered, but it might
be helpful to take it into account to differentiate between very similar elements.

4.2.4 Analyzing the Example

Given the example from section 2 the algorithm performs the following steps when ana-
lyzing the attribute locationv in the class Eventv:

1. The previously matched container is determined. In this case, the class Event of
the variant diagram (Eventv) was matched to the class Event in the base diagram
(Eventb).

2. All attributes of Eventb are weighted against locationv .

3. No match exceeding the limit was found (all attributes differ too much).



4. The search is broadened by considering all classes in the base diagram.

5. The attribute locationb in the class Concertb yields the maximum weight be-
cause the name is identical and the class is close in the inheritance hierarchy.

6. Both attributes are matched, the appropriate transformation operation (in this case
“move”) is generated and applied to the base diagram.

4.2.5 Visualization

By applying the transformations to the class diagram db and coloring the changed elements
appropriately the differences between two diagrams can be visualized effectively. A sam-
ple diagram was already shown in section 2. The following background colors had been
used to represent the different transformations: Blue is used for added or cloned elements,
green presents moved elements, and deleted elements have an orange background.

The text of modified elements (or the line of associations and generalizations) is colored
violet. The generated diagram can be viewed using an SVG6 viewer or a browser plugin7.
Additionally an HTML table report is generated, which lists the transformation operations
(again with a color coded background). See section 2 for a sample report.

4.2.6 Complexity

An element in the variant diagram is only analyzed once and compared to all elements
of the same type in the base diagram. If p is the number of packages and c the number
of classes, then the worst case is pv × pb + cv × cb comparisons for the packages and
classes. The same calculation holds for the elements within the classes. As the search is
first limited to a certain container and elements which have already been matched are not
taken into account anymore the average case is much better.

4.2.7 Evaluation of the prototype

The chosen offline approach is only practical when the compared snapshots do not differ
too much. For instance when both the name and the signature of an operation is changed
the evaluation function cannot easily match the operation. If this matching already fails
on the package or class level, it will fail completely because the elements within these
containers cannot be matched. Also, elements that contain only a few properties may
potentially confuse the matching process if too many similar elements exist. Furthermore,
in most cases renamed elements cannot be matched, because the new name may differ
immensely from the previous one. This means that enough clues in the model have to
exist, to make matching possible. One suggested solution is to make snapshots more often
to reduce the differences. Still, the approach returns better results than generic algorithms
and by adding more evaluation functions the recognition rate can be enhanced further.

6Scalable Vector Graphics. An XML based vector oriented graphic language.
7http://www.adobe.com/svg/

http://www.adobe.com/svg/


5 Case study

To show the practical value of UMLDiffcld it has been applied to a software system which
has been developed at our university during a practical for Software Engineering. The
client-server architecture is used for two player board games which can be played across
the network using RMI. The source code has been stored in a CVS repository from which
snapshots can be extracted.

Two snapshots, which are approximately three months apart, have been selected. The class
diagrams have been reengineered from the source code using Borland Together Control
Center. During the three months some packages have been remodeled from the ground
up, others underwent only minor changes. The whole system consists of 50 java classes in
ten (partly nested) packages. As the current prototype of UMLDiffcld only analyzes one
package at a time, three java packages have been selected for further (separate) analysis.

Figure 4: Colored class diagram showing difference of the games package of platform2play



The changes applied to the client package where only minor. Mainly classes and oper-
ations have been added and the differences where successfully detected by UMLDiffcld.

Figure 4 shows the merged class diagram of the games package. The elements with a
light blue background8 (bright gray in black and white reproductions) have been added
to the model, elements with pink (or gray) text have been modified (mostly changes of
the visibility, e.g. from public to protected). The colored diagrams gives a good
overview of the changes, which have been applied to the package.

The third package gui underwent heavy refactoring. The resulting difference diagram
shows many erroneously detected move operations. This clearly shows the limitations of
the algorithm if the number of differences is too high, only a different approach which
uses online analysis (see section 4) would be able to reveal the differences correctly.

6 Applications

The previously described algorithm can be used for several purposes. The following sce-
narios show a few areas, where class diagram diffing can be applied:

• The different revisions of class diagram during the design phase can be compared
to monitor the progress. Stable areas can be seen, repeatedly changed elements may
require additional attention. Both designers and clients can benefit from this by
easily finding even small changes.

• Developers compare a new revision with a previous one to detect changed program-
ming interfaces or newly added functionality. This is both useful for checking pro-
vided frameworks and self developed systems.

• The specification of a system (the design model) can be checked against a generated
diagram, which was reengineered from the implementation. Currently this is only
done “by hand” if at all.

• Different variants of models can be compared to detect differences. For instance
when a product is developed for several platforms and similarities or differences
have to be analyzed. By automating this process different branches can be simplified
or combined which lowers maintenance cost and complexity.

7 Related and future work

The work presented in this paper is based on the diploma thesis titled “Erkennung und
Analyse von Unterschieden in Klassendiagrammen und Sequenzdiagrammen” [Gir02]
which additionally analyses differences between sequence diagrams.

8The description of the used colors can be found in figure 2.



Some existing algorithms are limited to a specific language. For instance, JDiff9 compares
two Java packages and creates an HTML report containing the API differences between
these two releases. The approach relies on syntactic differences and cannot identify moved
or renamed elements.

Recently Zhenchang Xing and Eleni Stroulia investigated the evolution of specific classes
during their lifecycle [XS04]. The algorithm used to detect the changes is – coincidentally
– also named UMLDiff. Unfortunately, the paper does not go into detail how the algorithm
works, making it impossible to compare it to the work presented here.

In [OWK03] Dirk Ohst, Michael Welle, and Udo Kelter also describe an algorithm which
detects and visualizes the differences between versions of UML diagrams, but they rely on
using unique identifiers to match similar elements. Algorithms which work without those
identifiers are not within the scope of their paper. As has been mentioned in section 4.2
unique identifiers are not always present and limit the application of diagram diffing. For
instance, comparing diagrams from different sources cannot be compared.

A recently published paper by Udo Kelter, Jürgen Wehren, and Jörg Niere [KWN05] re-
frains from using unique identifiers and tries to match elements by comparing subtrees.
This approach shows similarities to UMLDiffcld but is not especially tailored to class dia-
grams. Without the additional information available in class diagrams the results might be
less accurate but the more generic approach is easier adaptable to other diagrams which
can be modelled with trees.

Some of the discussed algorithms are not freely available and adapting the generic algo-
rithms to a class diagram structure is not easily accomplishable. All approaches show
similarities therefore their applicability to other diagram types and the possibility to com-
bine them should be further investigated.

Another concept, which is applied to source code, is refactoring. By applying well-defined
operations the source code is transformed to an easier maintainable variant which is se-
mantically equivalent. By extending UMLDiffcld refactoring steps (e.g. push up, pull
down, etc.) can be automatically detected and visually presented. In addition, the contin-
uous analysis of model differences could reveal recurring change patterns, i.e., candidates
for new refactoring steps.

One of the main principles of model driven software development (MDSD) is to replace
the code by the model as the primary artifact. Model analysis and model to model transfor-
mation are important research topics within this area. Concepts like class diagram diffing
can help to visualize model differences, which is useful for model transformation debug-
ging and version controlling. Looking at the versioning process reveals that with MDSD
code diffing is replaced by model diffing.

9http://sourceforge.net/projects/javadiff/

http://sourceforge.net/projects/javadiff/


8 Conclusion

Although the UML still contains many ambiguous constructs, the defined syntax for class
diagrams is sufficient for detecting differences between models. The presented algorithm
is highly tailored towards UML class diagrams, which has several advantages: The knowl-
edge of the data structure makes the matching more precise and the found differences are
described using high level transformation operations.

Compared to generic change-detection algorithms the presented approach promises to re-
turn better results. Adapting the techniques for other hierarchical data structures can easily
be accomplished by designing evaluation function which model the restrictions of a given
data structure.

The concept of class diagram diffing extends naturally the textual change detection to
model information. Integrating the concepts of UMLDiffcld into modeling tools can help
to visualize model differences, and improves the software development process.

References

[CGM97] Sudarshan S. Chawathe and Hector Garcia-Molina. Meaningful Change Detection in
Structured Data. In ACM SIGMOD International Conference on Management of Data,
pages 26–37, Tucson, Arizona, May 1997.

[CTZ01] Shu-Yao Chien, Vassilis J. Tsotras, and Carlo Zaniolo. XML Document Versioning.
SIGMOD Records, 30(3), 2001.

[Gir02] Martin Girschick. Erkennung und Analyse von Unterschieden in Klassendiagrammen
und Sequenzdiagrammen. Diploma thesis TU-Darmstadt, 4 2002.

[HO82] Christoph M. Hoffmann and Michael J. O’Donnell. Pattern Matching in Trees. Journal
of the ACM, 29(1):68–95, 1982.

[KWN05] Udo Kelter, Jürgen Wehren, and Jörg Niere. A Generic Difference Algorithm for UML
Models. In Proceedings of the Software Engineering Conference 2005, Essen, Germany,
2005.

[OWK03] Dirk Ohst, Michael Welle, and Udo Kelter. Differences between versions of UML di-
agrams. In Proceedings of the 9th European software engineering conference, pages
227–236, New York, NY, USA, 2003. ACM Press. isbn = 1-58113-743-5,.

[Sel77] S. M. Selkow. The tree-to-tree editing problem. Information Processing Letters,
6(6):184–186, December 1977.

[XS04] Zhenchang Xing and Eleni Stroulia. Understanding Class Evolution in Object-Oriented
Software. In 12th International Workshop on Program Comprehension (IWPC 2004),
24-26 June 2004, Bari, Italy, pages 34–45. IEEE Computer Society, 2004.

[YW] Jin-Yi Cai Yuan Wang, David J. DeWitt. X-Diff: A Fast Change Detection Algorithm
for XMLDocuments. http://www.cs.wisc.edu/niagara/papers/xdiff.
pdf.

http://www.cs.wisc.edu/niagara/papers/xdiff.pdf
http://www.cs.wisc.edu/niagara/papers/xdiff.pdf

	Introduction
	An example
	Analysis
	The lifecycle of a class diagram
	Describing the changes
	Visualization

	Calculation of differences
	Comparing general data structures
	Comparing class diagrams
	The UMLDiffcld algorithm
	The comparison function
	The evaluation functions
	Analyzing the Example
	Visualization
	Complexity
	Evaluation of the prototype


	Case study
	Applications
	Related and future work
	Conclusion

